methyl byproducts or toxic chromium(V1) oxidants for the preparation of ketonucleosides. Easy isolation of the *2* iodobenzoic acid byproducts and their reconversion to the periodinane reagent¹⁹ (I) make this an economically feasible oxidant. Oxidation of 5'-O-tritylthymidine (1c) with I has provided the corresponding 2'-deoxy-3'-ketonucleoside **(2c)** in the highest yield (93%) presently reported. Preparation and characterization of *5'-0-* opment funds for generous support.

TBDPS-2'-deoxy-3'-ketoadenosine (2d), the first "stable" purine **2'-deoxy-3'-ketonucleoside** derivative, has been achieved by oxidation of 5'-O-TBDPS-2'-deoxyadenosine **(la)** with **I.**

Acknowledgment. We thank the American Cancer Society (CH-405) and Brigham Young University devel-

A Concise Approach to β -(1-+6)- and β , β -(1-+1)-Linked C-Disaccharides. The Synthesis of **C-@,@-Trehalose Peracetate**

Olivier R. Martin* and Wen Lai

Department of Chemistry, SUNY-University Center, Binghamton, New York 13901 Received May 25, 1990

Summary: The fluoride ion mediated condensation of the tetraacetate of β-C-glucopyranosylnitromethane with *al*dehydo sugars, followed by the elaboration of the resulting nitroaldol, provides an expeditious approach to β - $(1-\overline{})$ 6)-linked (from hexodialdose derivatives) and β , β - $(1 \rightarrow$ 1)-linked (from aldehydo-hexoses) C-disaccharides. C- β , β -Trehalose peracetate, 13, the first example of a C-disaccharide related to the trehaloses, was prepared using this methodology.

The replacement of the interglycosidic oxygen atom in disaccharides by a methylene group generates a class of extremely interesting, nonmetabolizable analogues of disaccharides, namely C-disaccharides. As chemically inert isosters of natural disaccharides, these pseudodisaccharides constitute potential inhibitors of glycosidases' and disaccharidases such as those present in the digestive tract.² The interest of these compounds is further supported by the recent discovery of the antiretroviral activity of certain glycosidase inhibitors (e.g., castanospermine). 3

Since the first synthesis of a C-disaccharide by Sinay and Rouzaud⁴ (D-Glc-C- β -(1- \rightarrow 6)-D-GlcOMe), several approaches to C -disaccharides have been investigated,^{5,6} and the syntheses of such analogues as C -maltose,^{5a} C -cellob-

(1) Lalégerie, P.; Legler, G.; Yon, J. M. Biochimie 1982, 64, 977.

(2) Truscheit, E.; Frommer, W.; Junge, B.; Müller, L.; Schmidt, D. D.;

Wingender, W. Angew. Chem., Int. Ed. Engl. 1981, 20, 744.

(3) (a) Walker, B. D.;

P. S.; Sjoerdsma, **A.** *Biochem. Biophys. Res. Commun.* **1987, 148, 206. (4)** Rouulud, D.; Sinay, P. J. *Chem. SOC., Chem. Commun.* **1983,1353.** (5) Syntheses of C-disaccharides: (a) Babirad, S. A.; Wang, Y.; Kishi, Y. J. Org. Chem. 1987, 52, 1370. (b) Giese, B.; Witzel, T. Angew. Chem., Int. Ed. Engl. 1986, 25, 450. (c) Goekjian, P. G.; Wu, T. C.; Kang, H. Y.; Ki

(6) Syntheses of precursors or analogs of C-disaccharides: (a) Ae-bischer, B.; Bieri, J. H.; Prewo, R.; Vasella, **A.** *Helu. Chim. Acta* **1982,65,** 2251. (b) Beau, J. M.; Sinaÿ, P. *Tetrahedron Lett.* 1985, 26, 6189. (c)
Danishefsky, S. J.; Pearson, W. H.; Harvey, D. F.; Maring, C. J.; Springer,
J. P. *J. Am. Chem. Soc.* 1985, *107*, 1256. (d) Jarosz, S.; Mootoo, D.;
 son, T.; Paton, R. M.; Rennie, R. A. J. Chem. Soc., Chem. Commun. 1988,
1339. (f) Carcano, M.; Nicotra, F.; Panza, L.; Russo, G. J.* Chem. Soc.,
Chem. Commun. 1989, 642. (g) Boschetti, A.; Nicotra, F.; Panza, L.; Russo, G.; Zucchelli, L. *J. Chem.* SOC., *Chem. Commun.* **1989, 1085.** (h) Motherwell, W. B.; Ross, B. C.; Tozer, M. J. *Synlett* **1989,68.** (i) Schmidt, R. R.; Preuss, R. *Tetrahedron Lett.* **1989, 30, 3409.**

iose,^{5a} and others^{5b-f} have been reported. Because of the difficulties inherent to the coupling of two sugar units by way of a carbon-carbon linkage, the first successful syntheses of C-disaccharides represent a major achievement. The long synthetic sequences involved limit, however, the availability of the final product. Our interest in C-disaccharides and derivatives as potential therapeutic agents for metabolic diseases prompted us to develop novel and short approaches to this type of pseudodisaccharides. We report, in this paper, a concise methodology for the synthesis of β -(1-6)- and β , β -(1-1)-linked C-disaccharides and its application to the preparation of two novel C-disaccharides, namely $D-Glc-C-\beta-(1\rightarrow6)-D-Gal$ (7) and C- β , β -trehalose peracetate (13).

Our approach is based on the utilization of C-glycosylnitromethane derivatives (e.g., **l),** available in two steps from the parent hexose,⁷ as C-nucleophilic reaction partners. As suggested by the successful condensation of a **5-deoxy-5-C-nitroribofuranose** derivative with aldehydo sugars, 8 and by the successful silylation of 1 to the corresponding silyl nitronates,⁹ it was expected that the nitronate anion derived from 1 would be stable and could be used as a C-nucleophile without concurrent β -elimination. Indeed, the fluoride ion mediated $8,10$ nitroaldol condensation of 1 with D-galactose-derived aldehyde **2** afforded the 7-deoxy-7-nitrotridecose derivative **3** in 52% yield" as one major diastereomer. The auxiliary functional groups of **3** were then removed in three steps (Scheme I): (1) acetylation-elimination of acetic acid, to give nitroalkene 4 [90%; E/Z mixture (\sim 1:1), slowly isomerizing to Z only; *2* isomer, *6* H-6, 6.305; *E* isomer, *6* H-6, 7.301; **(2)** selective reduction of the double bond of 4 using NaBH₄,¹² to give 7-nitro derivative *5* (59%; ratio of epimers at C-7,81); (3)

(11) All yields are for isolated products.

(12) See, for example: (a) Fukuda, Y.; Kitasato, H.; Sasai, H.; Suami, T. *Bull. Chem.* SOC. *Jpn.* **1982,55, 880.** (b) Bhattacharjya, **A.;** Mukhopadhyay, R.; Pakrashi, S. C. *Synthesis* **1985, 886.**

⁽⁷⁾ (a) Petrus, L.; Bystricky, S.; Bilik, **V.** *Chem. ruesti* **1982,36, 103.** (b) Fortsch, A.; Kogelberg, H.; Koll, P. *Carbohydr. Res.* **1987,164,391,**

⁽⁸⁾ (a) Synthesis of a tunicamine derivative: Suami, T.; Sasai, H.; Matsuno, K. *Chem. Lett.* **1983, 819.** (b) Synthesis of octosyl acid *A* Kozaki, S.; Sakanaka, 0.; Yasuda, T.; Shimizu, T.; Ogawa, S.; Suami, T. *J. Org. Chem.* **1988, 53, 281.**

⁽⁹⁾ Martin, **0.** R.; Khamis, F. E.; Rao, S. P. *Tetrahedron Lett.* **1989,** *30,* **6143.**

⁽¹⁰⁾ (a) Sakanaka, 0.; Ohmori, T.; Kozaki, S.; Suami, T.; Ishii, T.; Ohba, S.; Saito, Y. *Bull. Chem.* **SOC.** *Jpn.* **1986,59, 1753.** (b) Maguire, M. P.; Feldman, P. L.; Rapoport, H. J. *Org. Chem.* **1990, 55, 948** and references cited.

^a(1) KF, 18-crown-6; CH,CN; (2) AQO; pyridine-CHC1,; (3) NaBH, (reverse addition mode); EtOH-CH,Cl,; **(4)** Bu3SnH, AIBN; toluene, Δ ; (5) (i) MeONa; MeOH; (ii) Amberlite IR-120 (H⁺); H₂O, 70 °C. Yields in text.

^a(1) KF, 18-crown-6; CH₃CN; (2) Ac₂O; pyridine-CHCl₃; (3) (i) 80% AcOH, Δ ; (ii) Ac₂O-pyridine; (4) (i) MeONa, MeOH; (ii) Ac₂O-BF $Et₂O$; (5) $Bu₃SnH$, AIBN; toluene, Δ . Yields in text.

reductive denitration of **5** by way of a radical process,13 to give protected C-disaccharide 6 $[60\%; [\alpha]^{20}]_D - 45.6^{\circ}$ *(c 1.8,* CHCl₃). Deprotection of 6 in two steps afforded the novel, free C-disaccharide 7^{14} [89%, β/α ratio: 2.4:1; $[\alpha]^{\mathfrak{D}}_{\mathbf{D}}$ +11.9^o $(c 1.4, H₂O)$], thereby concluding an eight-step synthesis¹⁵ of the C-analogue of $\text{D-Glc-}\beta$ - $(1\rightarrow 6)$ - D-Gal from D-glucose and D-galactose.

Applied to open chain aldehydo-hexose derivatives as electrophilic reaction partners, the same methodology should give access to the extremely interesting and yet unknown C-analogues of $(1\rightarrow 1)$ -linked disaccharides such as, for example, β , β -trehalose. It was anticipated that the open-chain fragment of the condensation product could be recyclized to a "C-pyranoside" by way of a thermodynamically controlled intramolecular Michael addition upon cleavage of the protecting groups. Thus, condensation **of 1** with aldehydo-glucose derivative S16 gave 7-deoxy-7 nitrotridecitol derivative **9** (Scheme 11) as a mixture of diastereomers which were immediately converted into nitroalkene 10 $(29\%$ for three steps;¹¹ apparently only *E* isomer: δ H-6, 7.105). The treatment of 10 with 80% acetic acid at reflux temperature (30 min), followed by the acetylation and the separation of the resulting cyclized

⁽¹³⁾ Ono, N.; Kaji, A. *Synthesis* **1986,** 693. For recent examples of reductive cleavage of secondary nitro groups, see: Yoshikawa, M.; Cha, B. C.; Nakae, T.; Kitagawa, I. *Chem. Pharm. Bull.* **1988, 36,** 3714 and 3718.

⁽¹⁴⁾ Selected ¹³C NMR data (90 MHz, D_2O ; reference δ Me₂CO 30.5 ppm): δ 96.59 (C-1 β), 92.45 (C-1 α), 61.33 (C-13), 26.10 and 27.47 (C-6,7). All data reported are for equilibrated aqueous solutions of 7. For comparison, the specific rotation of equilibrated D-Glc- β - $(1\rightarrow 6)$ -D-Gal is $[\alpha]^{18}$ _D +13.9° (H₂O) (Freudenberg,K.; Wolf, A.; Knopf, E.; Zaheer, **1928,** *61,* 1743).

⁽¹⁵⁾ Overall unoptimized yield from C-glucosylnitromethane: 15%.

⁽¹⁶⁾ Prepared from D-glucose diethyl dithioacetal as follows: (1) (CH₃)₃CCOCl, pyridine-CHCl₃, 0 °C (72%); (2) (CH₃)₂C(OCH₃)₂, cat. TsOH (73%); (3) HgCl₂, CdCO₃; (CH₃)₂CO-H₂O (90%). For a related e *28,* 6437.

products by flash chromatography, afforded the desired, peracylated pseudodisaccharide **11 as** well **as** a substantial amount of its C-pyranosyl/C-furanosyl isomer (ratio of ring-size isomers: 55:45, 49.5% overall yield); both were obtained as R/S mixtures at C-7. In order to get rid of the pivaloyl group, and thus convert **11** into a pseudosymmetric structure, compound **11** was deacylated and reacetylated (54% for both steps) to give the remarkable pseudodisaccharide **12** which bears two identical glucopyranosyl units [syrup; $[\alpha]^{20}$ _D -5.3° *(c* 1.5, CHCl₃)]; as a result of the presence of the nitro group at C-7 (pseudoasymmetric center), the two sugar units are, however, diastereotopic, and the 'H NMR parameters of **1217** provide, thus, direct evidence on the conformation about the intergly cosidic linkages: the magnitude of the $J_{7,1}$ and $J_{7,1}$, coupling constants¹⁷ indicates a nearly anti relationship between H-1 and H-7, and gauche between H-1' and H-7, which is consistent with the sterically most favorable conformation of **12** about C-1-C-7 and C-l'-C-7 (see **12** in Scheme 11); this conformation (equivalent to standard torsional angles in disaccharides¹⁸ ϕ , $\psi = -60^{\circ}$, -60°) is essentially the same as the one predicted to be the most stable for β , β -trehalose and model compounds.¹⁹

Removal of the nitro group of 12 using Bu₃SnH afforded the symmetric β , β -trehalose analogue 13^{20} [76%; mp 141.4-142.4 °C; $[\alpha]^{20}$ _D -17.2° *(c* 1.5, CHCl₃)], the first example of a $(1\rightarrow 1)$ -linked C-disaccharide related to trehalose. Interestingly, the specific rotation of **13** was found to be identical with that measured and reported 21 in 1909 by E. Fischer for β , β -trehalose octaacetate! Detailed structural studies on these and related pseudodisaccharides are in progress and will be reported separately.

The results described in this paper demonstrate that the nitroaldol reaction of a β -C-glycosylnitromethane derivative wih *aldehydo* sugars provide a simple means of achieving the synthesis of β -(1-+6)- and β , β -(1-+1)-linked C-disaccharides with *minimal functional group manipula tion.*

Acknowledgment. Financial support from the National Institutes of Health (Grant DK-35766) is gratefully acknowledged.

Reduction of β -Hydroxy Ketones with Catecholborane. A Stereoselective Approach to the **Synthesis of Syn 1,3-Diols**

David A. Evans* and Amir H. Hoveyda

Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138

Receiued June **5,** *I990*

Summary: The stereoselective reduction of acyclic β -hydroxy ketones to syn 1,3-diols may be achieved with the mild reducing agent catecholborane. In certain instances reaction stereoselectivity may be enhanced through rhodium(1) catalysis.

The reduction of acyclic β -hydroxy ketones in a predictable and stereoselective manner is of considerable current interest, since syn and anti 1,3-diols are recurring units in a variety **of** polyacetate- and polypropionate-derived natural products. From the accumulated body of data, several generalizations have emerged. For example, when the reducing agent possesses the capacity to bind to the hydroxyl function with *intramolecular transfer of hydride*, the anti 1,3-diol is formed preferentially (eq 1).¹ In contrast, when an additive (e.g., Et_2B-X) is employed to preorganize the substrate prior to *intermolecular hydride addition* (e.g., by NaBH,), the syn isomer becomes the major product $(eq\ 2)^2$ In the present paper, we report an operationally convenient method for the syn-selective reduction of β -hydroxy ketones which complements the existing methods. In these reactions, catecholborane (CB) apparently serves both to provide substrate organization through boron aldolate formation and to function as the hydride donor.³

Several representative experiments serve to illustrate the dual role which catecholborane might be assuming in these reactions. Treatment of the @-hydroxy ketone **1** (Table I, entry 1) with 2.2 equiv of catecholborane in THF⁴ (-10 "C, 90 min) affords the syn diol **2** in **82%** yield

⁽¹⁷⁾ **Selected ¹H NMR data (CDCl₃)** δ **4.71 (dd, 1 H,** $J_{7,1} = 8.2$ **,** $J_{7,1'} =$ **2.9** Hz, H-7), **4.41** (dd, 1 H, **J1,2 9.7** Hz, H-l), **4.19** (dd, 1 **k,** J1,,2' ⁼**10.5** Hz, H-1').

⁽¹⁸⁾ Stoddart, J. F. *Stereochemisty of Carbohydrates;* Wiley-Interscience: New York, **1971.**

⁽¹⁹⁾ Tvaroska, I.; Vaclavic, L. *Carbohydr. Res.* **1987,** *160,* **137. (20) 13C** NMR (90 MHz, CDClJ: 6 **20.54 (2** C), **20.63, 20.67** (CH~COS), 33.34 (0.5 C, C-7), 62.53 (C-6), 68.92, 71.96, 73.25, 74.38, 76.02 (C-1–C-5),
169.42, 169.63, 170.22, and 170.42 (CH₃CO's). 'H NMR (360 MHz,
CDCl₃): 5 1.60 (m, 1 H, apparent J_{7,1} = 5.4 and 7.6 Hz, H-7's), 1.99, 2.03, 1 H, $J_{6A,6B} = 12.25$ Hz, H-6A), 4.22 (dd, 1 H, H-6B), 4.85 (t, 1 H, $J_{2,3} = 9.2$ Hz, H-2), 5.03 and 5.20 (2 t, 2 × 1 H, $J_{3,4} \sim 9.5$ Hz, H-3 and H-4).
(21) Fischer, E.; Delbrück, K. Ber. 1909, 42, 2776. See also: Bir G. *Adu. Carbohydr. Chem.* **1963,** *18,* **201** $= 2.4, J_{68B} = 5.35$ Hz, H-5), 3.70 (ddd, 1 H, $J_{1,2} = 10.0$ Hz, H-1), 4.10 (dd, 1 H, $J_{12} = 10.0$ Hz, H-1), 4.10 (dd, 1 H, $J_{12} = 10.0$ Hz, H-1), 4.10 (dd,

⁽¹⁾ For anti-selective reductions of @-hydroxy ketones, **see:** (a) Evans, D. A.; Hoveyda, A. H. *J. Am. Chem.* Soc., in press. (b) Evans, D. A.; Chapman, K. T.; Carreira, E. **M.** *J. Am. Chem. SOC.* **1988,110,3560-3578.** (c) Anwar, **S.;** Davis, A. P. *Tetrahedron* **1988,** *44,* **3761-3770.**

⁽²⁾ For syn-selective reductions of @-hydroxy ketones, **see:** (a) **Hana**moto, T.; Hiyama, T. *Tetrahedron Lett.* **1988**, 29, 6467–6470. (b) Chen,
K.-M.; Hardtmann, G. E.; Prasad, K.; Repic, O.; Shapiro, M. J. *Chem.*
Lett. 1987, 1923–1926. (c) Bonadies, F.; DiFabio, R.; Gubioti, A.; Mecozzi, Kuroda, H.; Shimasaki, Y. *Tetrahedron Lett*. 1986, 27, 3009–3112. (e)
Kathawala, F. G.; Prager, B.; Prasad, K.; Repic, O.; Shapiro, M. J.; Sta-
bler, R. S.; Widler, L. *Helv*. Chim. Acta 1986, 69, 803–805. (f) Narasaka,
K F.-C. *Chem. Lett.* **1980, 1415-1418.**

⁽³⁾ Kabalka, G. W.; Baker, J. D.; Neal, G. W. *J. Org. Chem.* **1977,42,** 512-51

⁽⁴⁾ Reductions may be performed in CH,CI, as **well** a8 THF. For example, 1 is reduced to the corresponding syn diol in CH₂Cl₂ (80% yield, $syn:anti = 10:1$).